Skip to content

Quickstart

This guide walks through setting up a local development environment, running core verification checks, and executing your first experiment. It merges the previous INSTALL_GUIDE.md and SETUP.md content into a single reference.

Prerequisites

  • Python 3.10+ (3.11 recommended)
  • Git for cloning the repository
  • Virtual environment tooling such as venv, conda, or pipenv
  • (Optional) Jupyter for running the demo notebooks

1. Clone the repository & create an environment

Unix/macOS:

# Clone repository
git clone https://github.com/quartumse/quartumse.git
cd quartumse

# Create virtual environment (replace with your preferred workflow)
python -m venv .venv

# Activate the environment
source .venv/bin/activate

Windows (PowerShell):

# Clone repository
git clone https://github.com/quartumse/quartumse.git
cd quartumse

# Create virtual environment
python -m venv .venv

# Activate the environment
.venv\Scripts\activate

Windows (Command Prompt):

rem Clone repository
git clone https://github.com/quartumse/quartumse.git
cd quartumse

rem Create virtual environment
python -m venv .venv

rem Activate the environment
.venv\Scripts\activate.bat

If you use Conda or another environment manager, create an equivalent environment targeting Python 3.10–3.12.

2. Install QuartumSE

Choose the extra set that matches your workflow:

Unix/macOS:

# Core SDK only
pip install -e .

# Core SDK + development tooling (pytest, black, ruff, mypy, jupyter)
pip install -e ".[dev]"

# With optional mitigation / chemistry dependencies (Python < 3.13)
pip install -e ".[dev,mitigation,chemistry]"

Windows:

# Core SDK only
pip install -e .

# Core SDK + development tooling (pytest, black, ruff, mypy, jupyter)
pip install -e ".[dev]"

# With optional mitigation / chemistry dependencies (Python < 3.13)
pip install -e ".[dev,mitigation,chemistry]"

Upgrading pip before installation often avoids wheel build issues:

Unix/macOS:

python -m pip install --upgrade pip

Windows:

python -m pip install --upgrade pip

3. Verify the installation

Run the basic smoke checks to make sure the package imports and the test suite passes on simulators:

Unix/macOS:

# Confirm the CLI can be invoked
quartumse --help

# Quick import verification
python -c "from quartumse import ShadowEstimator; print('QuartumSE ready')"

# Run unit tests (skipping slow hardware checks)
pytest tests -m "not slow and not hardware" -v

Windows:

# Confirm the CLI can be invoked
quartumse --help

# Quick import verification
python -c "from quartumse import ShadowEstimator; print('QuartumSE ready')"

# Run unit tests (skipping slow hardware checks)
pytest tests -m "not slow and not hardware" -v

Install pre-commit hooks to keep formatting and linting consistent:

Unix/macOS:

pre-commit install

Windows:

pre-commit install

4. Launch the quickstart notebook (optional)

Unix/macOS:

# Ensure Jupyter is installed (included in the [dev] extras)
pip install jupyter

# Start Jupyter Notebook or Lab
jupyter notebook
# or
jupyter lab

Windows:

# Ensure Jupyter is installed (included in the [dev] extras)
pip install jupyter

# Start Jupyter Notebook or Lab
jupyter notebook
# or
jupyter lab

Open notebooks/quickstart_shot_persistence.ipynb and choose Run All. The notebook walks through:

  1. Preparing a 3-qubit GHZ state.
  2. Estimating multiple observables with classical shadows.
  3. Inspecting the saved Parquet shot data and JSON provenance manifest.
  4. Replaying the experiment to calculate new observables without re-running the circuit.

Troubleshooting tips:

  • ModuleNotFoundError: quartumse → ensure the environment is activated and pip install -e . succeeded.
  • Browser does not open automatically → copy the Jupyter server URL from the terminal into your browser.
  • Kernel crashes mid-run → restart the kernel and choose Run All again.

5. Run the S‑T01 GHZ baseline experiment

The CLI script demonstrates the same workflow outside notebooks and produces provenance artifacts in data/:

Unix/macOS:

python experiments/shadows/S_T01_ghz_baseline.py --backend aer_simulator

Windows:

python experiments/shadows/S_T01_ghz_baseline.py --backend aer_simulator

Key outputs:

  • Observable estimates with 95% confidence intervals.
  • Shot-savings ratio (SSR) versus direct measurement baselines.
  • Manifest & shot files saved under data/manifests/ and data/shots/.

Supply an IBM Quantum backend descriptor (e.g., ibm:ibmq_qasm_simulator) to run against managed hardware or the cloud simulator once credentials are configured.

6. Next steps